
erature drops along the length are not less than 30~ for the same flow rate of cooling li- 
quid. 

On the basis of the above we can recommend this method for obtaining thermal conditions 
for certain elements in the instrumentaion field. 

NOTATION 

x, coordinate, m; T, T*, Tin , temperatures of the element surface (actual and assigned) 
and of air at the channel inlet, ~ ~(x), coefficient of convective heat transfer, W/m2.K; 
%(x), thermal conductivity of the element material, W/m.K; S(x) and ~, area of cross section 
and perimeter of the element being cooled, m 2, m; q(x), specific power of the heat sources 
in the element, W/m; Wi, electrical power supplied to section i, W; Oi, loss flux, W; F, 
section area, m2; Fc, area of the internal cone surface, m2; ~ and ~c, emissivities of the 
rod and cone surfaces; Er, reduced emissivity; D(x), diameter of the internal channel wall, 
m; d, diameter of the element being cooled, m; %, thermal conductivity of the liquid, W/m'K; 
~, viscosity of the liquid, m2/sec; M(x), flow area of the channel, m2; Ti, Tw, temperatures 
of section i of rod 1 and of the wall of channel 2 (Fig. I), respectively, ~ 
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HEAT TRANSFER IN TURBULENT FREE CONVECTION AROUND A HORIZONTAL 

NONISOTHERMAL CYLINDER 

Yu. Ya. Matveev and V. N. Pustovalov UDC 536.25 

The heat transfer of a horizontal cylinder in turbulent free convection and for 
a quadratic law of temperature variation on its surface is investigated numeri- 
cally: I0" ~ Ra ~ 1013 , Pr = 0.71. 

Heat transfer with free convection at horizontal circular cylinders has been studied 
repeatedly both experimentally and theoretically [1-5]. Development of a turbulent flow 
regime is considered below for nonisothermal boundary conditions that can hold near the 
surface of powerful thermal power plant elements [6]. 

The mathematical model of the process is the Reynolds equation in the Boussinesq ap- 
proximation which reduces to a system of three differential equations of identical struc- 
ture [5] after going over to dimensionless form and using the new independent variable ~ = 

in R. 

where the average axial component of vorticity, the stream function, and temperature are 
considered, respectively, as the desired function r The specific form of the coefficients 
of (I) is represented in Table i. The following scales, ro, a/ro, t m- tf, are chosen for 
the coordinate, the average velocity vector component, and the temperature. 

The problem was solved for the boundary conditions 

= 0 8 ~ / a ~  = ~ = o, T = T ( ~ ) ;  ~ = 5 T - -  ~ = ~ = O; ~ = 0 , ~  ~: = e = a Y l a ~  = o. 
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TABLE i. Coefficients of Equation (I) 

q5 

r 

T 

P r - :  

0 

1 1~ 8 Pr 

v Prt  

V 

1 

Ra f aT  . . aT ) 

' Sco 7 -  

The computation domain was a half-ring with inner radius ro and outer radius ro exp(5) = 
148.41ro. Validity of the assumption of negligibly small values of the dependent variables 
on so large a radius is given a foundation in [4]. 

A quadratic dimensionless temperature distribution over the outline of the cylinder 
transverse section was studied 

where 

~ - 1  (2) T (qO = -  q~ + i, ~2 

f = f  1, 0 o< 1, 
' [ 2 - - 0 ,  1 ~ o ~ - ~ 2 ,  

The magnitude of the constant o in (2) varied between 0 and 2, which permitted enclos- 
ing the whole range of temperature differences between the upper T u and lower TZ points of 
the outline (one of which is assumed unity) including for o = i, the case of isothermal 
surface heating. 

An explicit finite-difference method whose details are contained in [4, 5] was utilized 
in solving the problem. 

Twomodeling sections can provisionally be extracted: the intrinsic boundary layer on 
the surface and the vertical freely rising jet above the cylinder. 

The turbulent viscosity in the near-wall domain was determined by the model of the 
mixing path length. The action of just one of the four substantial fluctuating stress com- 
ponents was here taken into account in the plane case. However, the errors induced by such 
an assumption are small because of the smallness of the corresponding terms in the system 
(i) within the boundary-layer limits. More complex models with additional equations for 
the turbulence parameters are free of such a disadvantage. Meanwhile, the experience of 
previous investigations [7-9] shows that even so simple, and therefore, an economic a model 
assures good agreement with experimental results in the case of simple flows. 

Different modifications of the mixing path length mode] utilized earlier to solve the 
free convection problem were compared in [9] in a study of the structure of a turbulent jet 
rising along an isothermal wall. The analysis performed showed that the greatest accuracy 
held for a computation using the relationships recommended by Cebeci and Khattabom [8], 
which can be represented as follows when taking account of the notation used 

v = P r  / O~ ~ ' (3) 

where 
1/ /  1 O~* / 26), L = L~ = 0 .4  (exp  (~) .... I )  (1 - -  exp ((1 - -  exp  (~)) P r  O~ ~ / 

Lo ~ 0 . 0 7 5  8/ro, Lo <2 Li. 

The distance along the normal to the cylinder surface to the point where the maximum holds 
for the distribution of the circumferential velocity vector component was taken as the bound- 
ary layer thickness ~. 
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This model was modified to take account of the influence of effects associated with 
the surface curvature: an additional correction dependent on the Richardson number was 
introduced [i0-12]. 

L, 
_ /  1 - 2 c  

I 1 - -2c  

L, =L(1--cRi) ,  

Oq: / a~-~p O~--!-> 0.3 Vr 
o~ o~ ~ ' o~ ~ zx 

O~ (0.3 , 61ro. 

(4) 

Selection of the constant c in (4) is not unique: its magnitude depends on the kind of 
flow and fluctuates between 1.5 and 6 for different data [10-12]. A number of experiments 
indicates [12] that c is close to 1.5 for problems of external flow around a cylinder. Pre- 
cisely this value was indeed utilized in the computations. Let us note that as trial calcu- 
lations Showed, variation of the magnitude of the constant c in (4) does not result in no- 
ticeable changes in the local heat transfer characteristics. 

A freely rising jet above a cylinder apparently has slight influence on the flow char- 
acteristics near the surface. The accuracy of computing the hydrodynamic variables is not 
high since the mesh spacing in a radial direction increases and becomes nonuniform with 
distance from the surface. For this reason, the Prandtl constant viscosity formula was used 
to model the turbulent transport [13]: 

~ - =  0,0246BVrm/Pr. 
u 

The magnitude of the turbulent Prandtl number does not change in each of the domains 
and was assumed equal to 0.9 in the boundary layer and 0.5 in the freely rising jet. 

The computations were performed on nonuniform 41 • 41 difference mesh with node compac- 
tion in the domains where the solution has large gradients. Thus, the relative mesh spac- 
ing in the near-wall domain was constant (h~ = 0.001) and the velocity went from four to 
eight nodes in the radial direction on the section to the maximum point. 

The computed fields of the isostreamlines and isotherms in the domain of high Rayleigh 
numers were qualitatively similar to those obtained earlier for the laminar flow mode [6]. 

Distributions of the dimensionless local heat fluxes along the outline of an isothermal 
cylinder transverse section are represented in Fig. i. It is seen that the nature of the 
heat transfer of the cylinder surface in the case of a turbulent free convection mode has a 
number of substantial features. Firstly, it is the abrupt growth in the intensity and dis- 
placement (by more than i00-120 ~ under the effect of turbulent transport of the maximal 
heat transfer zone. The quantity Nu/Ra ~/3 changes as the Rayleigh number increases. Indeed, 
a low-intensity freely convective flow exists near the lower point of the transverse section 
outline for arbitrarily large values of Ra, which also specifies small values of E and a 
reduction in the relative local heat transfer as Ra grows. 

The results obtained are in satisfactory agreement with the computations of Farouk and 
Gucceri [14] (Fig. 1), executed in the range i0 s<~ - Ra~10 I~ by using a more complex k-~ 
turbulence model: the maximal difference is about 11%. The smaller magnitudes of the local 
thermal fluxes in [14] are apparently explained by the fact that the k-~ model takes account 
of the presence of the laminar section for small angles ~. Let us note that computations by 

both models yield practically identical values of Nu. 

As is seen from Fig. I, the maximal values of Nu shift toward smaller angles as Ra 
grows. The same tendency is also noted in [14]. The data of the calculations are described 
by the following regression equation constructed by the method of correlation analysis, 
where the maximal deviation of the individual computed points from the average curve does 

not exceed 3%: 

Nu -- 0,383-- 0.067 lgRa (1 --0,0421 lgRa + 0.13 cos ~--  0.184 sin~) + 
~ a l  ]a 

+ O. 108 cos + (1 + 0.47 cos + -- 0,626 sin +). 

Results on the mean heat transfer of the cylinder surface were processed analogously. 

The following dependence 
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Fig. 1 Fig. 2 

Local heat transfer of an isothermal cylinder: Fig. i. 

i) Ra = I09; 2) Ra = i01'; 3) Ra = 10*a; 4) Ra = i013; 
5) Ra = i09 numerical solution [14]. 

Fig, 2. Dependence of the function e* on the change in 
temperature head as the Rayleigh number increases: 
I) laminar mode [5]; turbulent mode; 2) Ra = i09; 3) i0 ~3 

TABLE 2. Comparison of Data on the Mean Nusselt Number Nu for 
an Isothermal Cylinder 

] lg Ra 
References I. 

Bosworth [151 [ t36,8 
Mikheev [16] [ 135 
Churchill and Chu [17] 116 
Wrightby and Hollands [18] t 107 
Kuehn and Goldstein [3] I 101 
Present paper I 103 

10 

284,7 
290,8 
24.0 
22l 
216 
226,2 

599 
626,6 
505 
466 
465 
496 

12 

1p 
1350 
!069 
992 

100! 
t083 

13 

2623 
2908 
2276 
2123 
2t55 
25tl 

TABLE 3. Polynomial Coefficients 

Range of 
va~letion �9 Ao 
of 0 

0 < ( ~ <  1 0 
0,5235 
1,047 
1 ,57  
2,094 
2,618 
3,142 

I < ~ 2  [ 0 
I O, 5235 
t 1,047 

1,57  
2 , 0 9 4  

j 2,618 
3,14.9 

0,0310 --0,0291 
0,0550 r--0,0049 
0,0721! 0,1059 
0,0386 0,0822 

I--0,00052'--0.1101 
I--0,0080 --0,2536 
I-0,oor5 -O,OLO5 

A~ A~ 

0,0820 
0,0609 

--0,2243 
0.2629 
119120 
1;5687~ 
0,11321 

0,2586 t--0,6824 0,7494 
--0 4820] 1,2664 ]--0,9236 

0140i4 I--0,6895 0 6270 
--0,5144' 1,7712 ! , 'A~ ,  

0,4r35 I-0,3753 - ~ : ~  
--2,4029 7,7846 --8,6528 
i--0.2013 0,6648 I--0,6467 

A a A, A s 

--0,1071 0,0479 I 0,0 
--0.1192 0.0734 I 0 0 

o,3953 i-o;224~ olo 
-0.3705 [ 0,1472~ 0,0 
--413866 I 4,0635 --I,3111 
--0,5!87 i--3,3545 I 218580 
--0,03598i--0,2669 I 0,2488 

, r 

--0,oO411 0,0638 0,0 
0,20~57: 0,0 0,0 

--0,3071 i 0,0247 0,01429 
0.3367 i 0,0 " 0,0 
o,o t o , o  o,o 
4.1154 I--0,7!35 0,0 
012589 }--0,0:37i 0,6 

Nu = (0,092 + 0,0016 ]g Ra) Ra ~13 

for i09~ Ra~ I0 xs was obtained with 2% error. 

A comparison between the computed mean Nusselt numbers and those calculated by the cri- 
terial formulas proposed earlier is presented in Table 2. The numerical results are in good 
agreement with empirical dependence in the whole investigated range of Rayleigh number varia- 
tion. 

Intensification of the heat transport in the turbulent flow mode exerts substantial in- 
fluence on the regularities of the cylinder heat transfer even under nonisotherma] boundary 
conditions. The degree of this influence is magnified as the Rayleigh number grows. An in- 
crease in the mean temperature of the fluid running over the upper part of the cylinder sur- 
fact results in an increase in tbe extent of the section with opposite thermal flux vector 
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Fig. 3. Local heat transfer of a nonisothermal 
cylinder for large Rayleigh numbers: i) o = 1.8; 
2) 1.6; 3) 1.4; 4) 1.5; 5) I; 6) 0.8; 7) 0.6; 
8) 0.4; 9) 0.2. 

direction for a negative temperature drop along the transverse section outline, and in a 
reduction in the local temperature heat in the ease of positive heat transfer (o > i). Con- 
sequently, a stronger diminution in the cylinder mean heat transfer (Fig. 2) is observed, as 
compared with the laminar flow mode. 

Computed values of the coefficient of diminution E* in the Rayleigh number range in- 
vestigated are approximated by the following similarity equations: 

e* -- 0.88 ~ 0-132 o ~ - ~ - 0 . 0 4 7 2 ( a - l ) t g R a ,  1 ~ 0 ;  

~* == 2,28 2 0.00184 (lg Ra) ~ 2_ 1,38 o (0,24 ~ ~ 0,03 lg Ra - -  1), 2 ~.  o ~ 1. 

Here the maximum error is 2.5%. 

Because the turbulence model used did not permit computation of the flow transition 
zone, a statistical analysis of the obtained results on the local heat transfer of a non- 
isothermal cylinder was performed only in the domain of high Rayleigh numbers Ra = I0 ~=- 
i0 z3. Dependences of the form 

4 

Q~ Ra- i j3 __ ~.~ A~i o ~ 
i = 0  

h a v e  been  e s t a b l i s h e d  f o r  a number o f  v a l u e s  o f  t h e  p o l a r  a n g l e ,  where  ~ = ~ j / 6 ,  j = 0, 1, 
2, . . . ,  6; 0 .2  ~ g ~  1 . 8 .  The c o e f f i c i e n t s  A~i a r e  p r e s e n t e d  in  T a b l e  3. The l a s t  f o r m u l a s  
p e r m i t  d e t e r m i n a t i o n  o f  t h e  m a g n i t u d e  o f  t h e  d i m e n s i o n l e s s  t h e r m a l  f l u x e s  a t  i n d i v i d u a l  
p o i n t s  o f  t h e  o u t l i n e ,  and a t  any i n t e r m e d i a t e  p o i n t  by u s i n g  i n t e r p o l a t i o n .  

The computed  d i s t r i b u t i o n s  Q~ a l o n g  t h e  c y l i n d e r  t r a n s v e r s e  s e c t i o n  o u t l i n e  a r e  shown 
in  F ig .  3 f o r  d i f f e r e n t  v a l u e s  o f  t h e  p a r a m e t e r  ~ f o r  Ra = 10 ~a. In  a d d i t i o n ,  a s u b s t a n t i -  
a l l y  more n a r r o w  r a n g e  o f  v a r i a t i o n  o f  t h e  i n d e p e n d e n t  v a r i a b l e s  i 0 z ~  Ra ~ 1 0 ~ ;  0 .6  ~ g 
1 .4  h o l d s  f o r  t h e  f o r m u l a t i o n  o f  h e a t  t r a n s f e r  b o u n d a r y  c o n d i t i o n s  t o  t h e  a l m o s t  c y l i n d r i -  
c a l  h o u s i n g  s u r f a c e s  o f  s t e a m  t u r b i n e s .  The d i s t r i b u t i o n  o f  t h e  l o c a l  h e a t  t r a n s f e r  c o -  
e f f i c i e n t s  can be determined in this case by means of the following approximate formulas 
(10% error) 

o ~ 1 Q~/Q~ = 1.32 -k0.11 cos(p(cos (p - -3 .4o )  @0.0037 lgRa (lgRa + lO.7cos(p--22cO, 

o ~ 1  Q~/Q~ = l.07--0,11cos~p(cosr 7.5c~-- 7,7) - - 0 , 0 7 6 1 g R a ( l ~ a ) .  

Therefore, the nonisothermy of the cylinder surface in the case of a turbulent flow 
mode with natural convection exerts substantial influence on the local and mean heat trans- 
fer coefficients. This influence can be taken into account on the basis of the proposed 
dependences. Further refinements can be obtained on the basis of more perfect turbulence 

models. 

NOTATION 

~, polar angle measured from the lower point of the cylinder transverse section outline, 
red; r, radial coordinate; ro, d, cylinder radius and diameter; R = r/ro, T = (t -- tf)/(t m- 
tf), dimensionless average temperature; Vr, V~, dimensionless radial and tangential mean 
velocity vector components; ~, ~, dimensional axial component of the velocity vector and the 
stream function; V r = --exp(--$)~/D~; V,~ = exp(--~)$~/~r ~ = exp(--~)(exp(--$)~(exp(~)V~)/~ -- 
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~Vr/$~); a, v, ~\, B, respectively, thermal diffusivity, kinenmtic viscosity, heat conduction, 
and volume expansion coefficients of a fluid; g, free-fall acceleration; Ra = gB(t m -- tf)d3/ 
(~), Rayleigh number; Pr = Y/u, Prandtl number; E, coefficient of turbulent viscosity; L, 
dimensionless mixing path length; c, empirical constant to take account of the influence of 
surface curvature; Ri = 2(V /r)/(~V~/~), Richardson number, Prt, turbulent Prandtl number; 

OVr 
B = b/ro, b, distance between the jet axis and a point at which Vr/Vrm = 0.5, S~ = 2 , Ra~ 
V~I O~s A aV~. a2s - -2  ov~ o2s �9 4 aVr Os 2 aVm Os 

----. - -  - - - -  • is the additional term 
R / dR 2 OR RO~aR aR R~a~ 2 R OR RO~ R OR aR 
in the velocity vortex transport equation; q~, q, local and mean heat fluxes; Qm = qmd/ 
(%(t m -- tf)), Q= qd/(X(t m- tf)), local and mean dimensionless heat fluxes; QI = Nu; Nu = 
ad/%, Nusselt number; ~, heat-transfer coefficient; ~* = Q/Q~. Subscripts: m, maximum 
value; i, isothermal case; f, far from the cylinder surface, and q~ corresponds to a function 
of the polar angle. 
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